Π	poe	кт

Федеральное госу	ударственное бюдже	етное научное учр	еждение «Научно-
исследовательский	институт биомедиц	инской химии име	ени В.Н. Ореховича»

СОГЛАСОВАНО	УТВЕРЖДАЮ					
Ученым советом ИБМХ	Директор ИБМХ					
Протокол № от «»2025 г.	E.A. Пономаренко (подпись)					
	М.П.					

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Структурная биоинформатика: AlphaFold3»

1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

1.1. Цель реализации программы дополнительного профессионального образования.

Целью реализации программы является повышение квалификации в структурной вычислительной биологии, совершенствование и формирование новых компетенций, необходимых для профессиональной деятельности, и (или) повышение профессионального уровня в рамках имеющейся квалификации.

1.2. Требования к обучающемуся

Категория слушателей: обучающиеся должны иметь высшее медицинское, фармацевтическое, химическое, физическое, математическое или биологическое образование. Наличие указанного образования должно подтверждаться документом государственного образца.

1.3. Трудоемкость обучения

Срок обучения: 2 месяца 2 недели, 76 часа

Форма обучения: дистанционная

Режим занятий: вт., пт. с 18:00 до 19:30

Выдаваемый документ: удостоверение о повышении квалификации

2. РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

2.1. Характеристика нового вида деятельности, новой квалификации

В результате освоения программы слушатель должен приобрести следующие компетенции:

2.1.1. Универсальные компетенции:

- а. Навыки работы с облачными вычислительными технологиями
- b. Способность выбирать условия проведения эксперимента in silico (параметры моделирования)
- с. Способность планировать и осуществлять эксперимент in silico для задач структурной биологии с применением ПО AlphaFold 3, GROMACS, PyMOL
- d. Способность оценивать и интерпретировать результаты in silico эксперементов в рамках направленности курса
- е. Способность самостоятельно актуализировать знания об изменениях порядка работы в связи с обновлением ПО при помощи официальных источников

2.1.2. Общепрофессиональные компетенции:

а. Способность самостоятельно осуществлять научноисследовательскую деятельность в соответствующей профессиональной области с использованием современных методов исследования

2.1.3. Профессиональные компетенции:

а. Способность к самостоятельному проведению научноисследовательской работы и получению научных результатов, удовлетворяющих установленным требованиям к содержанию диссертаций на соискание ученой степени кандидата наук по направленности (профилю)

3. СОДЕРЖАНИЕ ПРОГРАММЫ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

3.1. Учебный план

	е, час.	Ay	_	ные зан	ятия,			ционні ия, час		тельная /шателя,	1	ежуточ ная стация				
	Всего по модулю / дисциплин	Всего по модулю / дисциплине, час.	исциплин	исциплине	исциплине			из них				из них	<u> </u>	Самостоятельная работа слушателя,	Опрос устный	Экзамен
Наименование Темы Темы от			Всего, час.	Лекции	Лабораторные работы	Практические занятия, семинары	Всего, час.	Лекции	Лабораторные работы	Практические занятия, семинары						
1	2	3	4	5	6	7	8	9	10	11	12	13				
Вводная лекция «Поиск и конструирование новых лекарств с применением методов in silico»	2						2			0						
Вводное занятие: проверка подключения и средств связи. Приветственное слово.	2						2			0						
Платформа аренды вычислительных мощностей Yandex Cloud. Основы, достоинства, недостатки	4								2	2						
Основы удаленного доступа: протоколы RDP и SSH	4								2	2						
Передача файлов на удаленные машины: протоколы SFTP и SCP, утилита winSCP	4								2	2						
Коллоквиум: устный опрос по пройденному материалу	2								2	0	+					

Экспериментальное									
определение структуры									
белка. База данных PDB.									
Предсказание структуры	4				2		2		
белка in silico. Modeller,	_				_		_		
Swiss-Model, Rosetta,									
AlphaFold									
Визуализация молекул,									
функционал приложений:	4					2	2		
PyMol, VMD									
Базовые принцпы	4				2		2		
AlphaFold3.	4				2		2		
AlphaFold3. Прорыв в									
структурной									
биоинформатике									
благодаря нейронным	4					2	2		
сетям. Принципы работы.	_								
Оценка качества									
моделирования. Сравнение									
c PDB									
Возможности AlphaFold3 в									
области моделирования									
комплексов белок-лиганд									
(белок, нуклеиновые	4					2	2		
	4					2	2		
кислоты и									
низкомолекулярные									
соединения)									
Коллоквиум: устный опрос									
по пройденному	2					2	0	+	
материалу									
Молекулярная механика.					_		_		
Поля сил.	4				2		2		
	4				2		2		
Молекулярный докинг.	4				2		2		
Моделирование комплекса									
белок-низкомолекулярный									
лиганд и белок-белкового	4				2		2		
комплекса методом									
докинга									
Сущность молекулярной									
динамики. Программы									
моделирования									
	4				2		2		
молекулярной динамики									
(Amber, Gromacs, NAMD,									
CHARMM)			ļ						
Молекулярное									
моделирование.									
Молекулярная динамика.						2	2		
Применение методов	4					2	2		
молекулярной динамики в									
пакете GROMACS (Amber)									
Молекулярная динамика	-	<u> </u>	-						
	1					2	2		
белок-лигандного	4					2	2		
комплекса		1	1						
Обзор статей по									
1 Alaka Eald2	4					2	2		
применению AlphaFold3	4								
для задач биотехнологий и	•								
для задач биотехнологий и	_			•	 			t	
для задач биотехнологий и биомедицины						_	_		
для задач биотехнологий и биомедицины Консультация перед	4					2	2		
для задач биотехнологий и биомедицины Консультация перед экзаменом	4								1
для задач биотехнологий и биомедицины Консультация перед экзаменом Экзамен	4				4 .=	2	2		+
для задач биотехнологий и биомедицины Консультация перед экзаменом Экзамен Итого:	4				16				+
для задач биотехнологий и биомедицины Консультация перед экзаменом Экзамен	4				16	2	2		+
для задач биотехнологий и биомедицины Консультация перед экзаменом Экзамен Итого:	4				16	2	2		+

3.2. Календарный учебный график (2022-2023 гг.)

№ п/п	Период обучения	Наименование темы
	2 недели	Модулю 1. Общая компьютерная грамотность
	1 месяц	Модуль 2. Alpha Fold 3
	1 месяц	Модуль 3. Молекулярная динамика

4. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

4.1. Материально-технические условия реализации программы

4.1.1. Требования к МТО для реализации курса

Аудитория для лекций должна быть оснащена компьютерами с ОС "microsoft windows 10" или "microsoft windows 11» и гарнитурой, или другими устройствами, позволяющими осуществлять двустороннюю голосовую связь, широкополосный выход в Интернет. Доступ к платформе «Яндекс Телемост». Аудитория для практическиъх работ должна быть оснащена компьютер с ОС "microsoft windows 10" или "microsoft windows 11" и гарнитурой, или другими устройствами, позволяющими осуществлять двустороннюю голосовую связь, широкополосный выход в Интернет, сервер на платформе YandexCloud, соответствующие типу «Intel Broadwell with NVIDIA® Tesla® V100» с 1 GPU, ОС "ubuntu" доступный для подключения по протоколам ssh и sftр и установленным ПО: Gromacs с поддержкой NVIDIA CUDA, htop. Наличие файлов-ключей на компьютере инструтора. Доступ к платформе «Яндекс Телемост».

4.1.2. Требования к МТО для освоения курса со стороны обучающегося

Слушатель должен быть оснащен компьютером с ОС "microsoft windows 10" или "microsoft windows 11" и гарнитурой, или другими устройствами, позволяющими осуществлять двустороннюю голосовую связь, широкополосный выход в Интернет. Необходимо наличие прав администратора на компьютере

обучающегося. Возможно использование ОС, основанных на Debian при наличии у обучающихся гоот-доступа. В случае возникновения эффекта реверберации, слушатели, использующие колонки, не допускаются на занятия. Доступ к платформе «Яндекс Телемост».

4.2. Учебно-методическое обеспечение программы

4.2.1. Основная литература

Козлова А.С. Згода А.В. Под редакцией Лисицы А. В. Структурная биоинформатика: AlphaFold3 и облачные вычисления. Методическое пособие. - 1 изд. - М.: ИБМХ, 2025

Х.Д.Хёльтье, В. Зиппль, Д. Роньян, Г. Фолькерс. Молекулярное моделирование (теория и практика). Под редакцией В.А.Палюлина и Е.В.Радченко М.: БИНОМ. Лаборатория знаний, 2010.- 318 с: ил.- (Медицинская химия). ISBN 978-5-9963-0156-0

4.2.2. Дополнительная литература

Рапапорт Д.К.; Дьяконова А.Н. (пер. с англ.); Ефремов Р.Г. (науч. ред.). — М.; Ижевск: Ин-т компьютер. исслед., 2012. — 630 с.

Abramson, J., Adler, J., Dunger, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

4.2.3. Электронные ресурсы

GROMACS 2025.3 Manual // zenodo URL: https://zenodo.org/records/16992569 (дата обращения: 08.09.2025).

5. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Коллоквиумы проходят в формате комбинированного опроса, для сдачи которого, студенту необходимо при помощи полученных в ходе обучения знаний и навыков выполнить практическую задачу. В случае самостоятельного выполнения задачи в полном объеме и без ошибок, влияющих на результат, выставляется оценка «отлично». В случае, если в работе допущены незначительные неточности, или на определенных этапах для выполнения задачи требовалась помощь преподавателя (инструктора), однако полученный результат достоверен, выставляется оценка «хорошо». В случаях, когда задача выполнена частично, но не менее 70%, или выполнена с обращением к личным записям студента (конспектам), однако сохранна достоверность результатов, выставляется оценка «удовлетворительно». В случаях, когда задача не выполнена, или выполнена с искажением результатов, или выполнено меннее 70% от объема задачи, или задача выполнена не самостоятельно (списывание), или в случае отсутствия на коллоквиуме без уважительной причины выставляется оценка «неудовлетворительно» и назначается пересдача: не более одного раза в течение двух недель после даты коллоквиума.

6. РАЗРАБОТЧИКИ ПРОГРАММЫ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Пономаренко Елена Александровна, доктор биологических наук, член-корреспондент РАН

Ромашова Юлия Александровна, кандидат биологических наук Поройков Владимир Васильевич, доктор биологических наук, академик РАН Веселовский Александр Владимирович, доктор биологических наук Лисица Андрей Валерьевич, доктор биологических наук, академик РАН